TY - JOUR
T1 - A preliminary study on the reduction of limonite ore by using rice husk as a reducing agent
AU - Maksum, Ahmad
AU - Husein, Michael Kelvin E.
AU - Permana, Sulaksana
AU - Rustandi, Andi
AU - Soedarsono, Johny Wahyuadi
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/3/28
Y1 - 2018/3/28
N2 - The abundant of rice husk in Indonesia has encouraged researchers to study the feasibility of rice husk for substituting material that is more expensive or dangerous. In previous study, silica with a purity of 99.9% has been obtained from rice husk with calcinations process. Nevertheless, the gases resulting from the process were not used and left useless. Therefore, in this study, those gases derived from rice husk calcinations process were used as reducing agents during the ferronickel (Fe-Ni) production through a direct reduction process. The objective of this study was to investigate the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The limonite ore were crushed to the size of less than 150 mesh using disc-mill, and then were mixed with rice husk powder (10, 20, 30 in wt % mass) before being pelletized using bentonite as a binder. The resulted pellets were roasted at 500°C for 60 minutes and then quenched in water media. After drying process, the reduction process of 40g pellets was conducted at 1000°C for 90 minutes with 20g rice husk in furnace. The effects of additional rice husk on the direct reduction of limonite ore pellets were qualitatively analyzed by using X-ray powder diffraction (XRD) and quantitatively by Atomic absorption spectroscopy (AAS). Both analysis results showed that the reduction process followed the reaction scheme: Fe2O3→Fe3O4→FeO and NiO phase was detected in the sample with 20% rice husk addition. The optimum concentration of Ni 1.23% was obtained for 20% rice husk addition.
AB - The abundant of rice husk in Indonesia has encouraged researchers to study the feasibility of rice husk for substituting material that is more expensive or dangerous. In previous study, silica with a purity of 99.9% has been obtained from rice husk with calcinations process. Nevertheless, the gases resulting from the process were not used and left useless. Therefore, in this study, those gases derived from rice husk calcinations process were used as reducing agents during the ferronickel (Fe-Ni) production through a direct reduction process. The objective of this study was to investigate the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The limonite ore were crushed to the size of less than 150 mesh using disc-mill, and then were mixed with rice husk powder (10, 20, 30 in wt % mass) before being pelletized using bentonite as a binder. The resulted pellets were roasted at 500°C for 60 minutes and then quenched in water media. After drying process, the reduction process of 40g pellets was conducted at 1000°C for 90 minutes with 20g rice husk in furnace. The effects of additional rice husk on the direct reduction of limonite ore pellets were qualitatively analyzed by using X-ray powder diffraction (XRD) and quantitatively by Atomic absorption spectroscopy (AAS). Both analysis results showed that the reduction process followed the reaction scheme: Fe2O3→Fe3O4→FeO and NiO phase was detected in the sample with 20% rice husk addition. The optimum concentration of Ni 1.23% was obtained for 20% rice husk addition.
KW - Direct reduction
KW - Ferronickel
KW - Limonite
KW - Quenching
KW - Rice husk
UR - http://www.scopus.com/inward/record.url?scp=85045635582&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/316/1/012050
DO - 10.1088/1757-899X/316/1/012050
M3 - Conference article
AN - SCOPUS:85045635582
SN - 1757-8981
VL - 316
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012050
T2 - 15th International Conference on Quality in Research, QiR 2017
Y2 - 24 July 2017 through 27 July 2017
ER -