A palette of background-free tame fluorescent probes for intracellular multi-color labelling in live cells

Samira Husen Alamudi, Dongdong Su, Kyung Jin Lee, Jung Yeol Lee, José Luis Belmonte-Vázquez, Hee Sung Park, Eduardo Peña-Cabrera, Young Tae Chang

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

A multi-color labelling technique for visualizing multiple intracellular apparatuses in their native environment using small fluorescent probes remains challenging. This approach requires both orthogonal and biocompatible coupling reactions in heterogeneous biological systems with minimum fluorescence background noise. Here, we present a palette of BODIPY probes containing azide and cyclooctyne moieties for copper-free click chemistry in living cells. The probes, referred to as 'tame probes', are highly permeable and specific in nature, leaving no background noise in cells. Such probes, which are rationally designed through optimized lipophilicity, water solubility and charged van der Waals surface area, allow us to demonstrate rapid and efficient concurrent multi-labelling of intracellular target components. We show that these probes are capable of not only labelling organelles and engineered proteins, but also showing the intracellular glycoconjugates' dynamics, through the use of metabolic oligosaccharide engineering technology in various cell types. The results demonstrated in this study thus provide flexibility for multi-spectral labelling strategies in native systems in a high spatiotemporal manner.

Original languageEnglish
Pages (from-to)2376-2383
Number of pages8
JournalChemical Science
Volume9
Issue number8
DOIs
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'A palette of background-free tame fluorescent probes for intracellular multi-color labelling in live cells'. Together they form a unique fingerprint.

Cite this