TY - JOUR
T1 - A Novel Session Key Update Scheme for LoRaWAN
AU - Hayati, Nur
AU - Windarta, Susila
AU - Suryanegara, Muhammad
AU - Pranggono, Bernardi
AU - Ramli, Kalamullah
N1 - Publisher Copyright:
Author
PY - 2022
Y1 - 2022
N2 - This paper proposes a novel Long-range Wide Area Network (LoRaWAN) session key updating scheme to enhance the security of LoRaWAN with cost-effective communication that provides a unique key for each communication session. The scheme consists of three sequential stages, initialization, keying material preparation, and key updating, on the basis of the truncated Photon-256 algorithm with updatable keying materials. These stages are structured by a set of novel communication protocols. To prove the uniqueness of the key, we validated its sequence bit randomness using the NIST 800-22 and ENT statistical test suites. The validation results show that the key passes all test parameters. Subsequently, the communication protocols were validated by using Scyther tools. We proved that these protocols ensure the security of the LoRaWAN key update scheme and guarantee that active interception does not occur. The analysis was performed by focusing on the security features of data confidentiality, integrity protection, mutual authentication, perfect forward secrecy, and replay attack resistance. Finally, a formal security analysis using GNY logic indicated that the overall security goals are achieved. The proposed scheme’s performance was evaluated in terms of computational cost, communication cost, and storage. The computational cost needed by the scheme is very small, indicating that there is no additional burden on the backend system. The communication cost requires less traffic than previous solutions, yet it offers more robust security for LoRaWAN by producing a new key in every communication session. The scheme needs insignificant additional storage that is considered negligible.
AB - This paper proposes a novel Long-range Wide Area Network (LoRaWAN) session key updating scheme to enhance the security of LoRaWAN with cost-effective communication that provides a unique key for each communication session. The scheme consists of three sequential stages, initialization, keying material preparation, and key updating, on the basis of the truncated Photon-256 algorithm with updatable keying materials. These stages are structured by a set of novel communication protocols. To prove the uniqueness of the key, we validated its sequence bit randomness using the NIST 800-22 and ENT statistical test suites. The validation results show that the key passes all test parameters. Subsequently, the communication protocols were validated by using Scyther tools. We proved that these protocols ensure the security of the LoRaWAN key update scheme and guarantee that active interception does not occur. The analysis was performed by focusing on the security features of data confidentiality, integrity protection, mutual authentication, perfect forward secrecy, and replay attack resistance. Finally, a formal security analysis using GNY logic indicated that the overall security goals are achieved. The proposed scheme’s performance was evaluated in terms of computational cost, communication cost, and storage. The computational cost needed by the scheme is very small, indicating that there is no additional burden on the backend system. The communication cost requires less traffic than previous solutions, yet it offers more robust security for LoRaWAN by producing a new key in every communication session. The scheme needs insignificant additional storage that is considered negligible.
KW - key management
KW - LoRaWAN security
KW - secure protocol
KW - session key update
KW - truncated Photon-256
UR - http://www.scopus.com/inward/record.url?scp=85136664577&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2022.3200397
DO - 10.1109/ACCESS.2022.3200397
M3 - Article
AN - SCOPUS:85136664577
SN - 2169-3536
VL - 10
SP - 1
JO - IEEE Access
JF - IEEE Access
ER -