A mobile robots PSO-based for odor source localization in dynamic advection-diffusion environment

Wisnu Jatmiko, Kosuke Sekiyama, Toshio Fukuda

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

This paper presents a problem of odor source localization in a dynamic environment, which means the odor distribution is changing over time. Odor source localization is an interesting application in dynamic problems. Modified Particle Swarm Optimization is a well-known algorithm, which can continuously track a changing optimum over time. PSO can be improved or adapted by incorporating the change detection and responding mechanisms for solving dynamic problems. Charged PSO which is another extension of the PSO has also been applied to solve dynamic problems. We will adopt two types of modified concepts of PSO for a new algorithm in order to control autonomous vehicles in more realistic environment where a speed limitation of the robot behavior and collision avoidance mechanism should be taken into consideration as well as the effect of noise and threshold value for the odor sensor response, also positioning error of GPS sensor of robot. Simulations illustrate that the new approach can solve such dynamic problems in Advection-Diffusion odor model environment.

Original languageEnglish
Title of host publication2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006
Pages4527-4532
Number of pages6
DOIs
Publication statusPublished - 1 Dec 2006
Event2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006 - Beijing, China
Duration: 9 Oct 200615 Oct 2006

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Conference

Conference2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006
Country/TerritoryChina
CityBeijing
Period9/10/0615/10/06

Fingerprint

Dive into the research topics of 'A mobile robots PSO-based for odor source localization in dynamic advection-diffusion environment'. Together they form a unique fingerprint.

Cite this