A complete modelling of Local Binary Pattern for detection of diabetic retinopathy

Devvi Sarwinda, Alhadi B., Ari Wibisono

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Diabetic Retinopathy (DR) is one of the eye diseases which is caused by Diabetes Mellitus, its effect can make blindness. DR can be detected from retinal image with various approaches such as area, color, statistic, and texture. In this study, we propose detection of DR by using texture feature characteristic from STARE database. A complete modelling of Local Binary pattern (CLBP) presented as feature extraction method of texture. Utilization of sign, magnitude and mean value are applied to this feature extraction approach. We have used Expectation Maximization-Principal Component Analysis (EM-PCA) as feature selection method and KNN as a classifier. The experimental results (combination of CLBP sign and mean value, and combination of CLBP sign and magnitude) show better accuracy compare to another method. CLBP-SC (CLBP sign and mean value) has similar accuracy with CLBP-SM (CLBP sign and magnitude), where it is 97.16%. For sensitivity and specificity performance, the higher value is 98% and is 97% respectively. In addition, we also do running time comparison of five approaches. CLBP-SM gives good performance with smaller running time. These results suggest that our proposed method in this paper can be used in aid system diagnosis for diabetic retinopathy.

Original languageEnglish
Title of host publicationProceedings - 2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7-10
Number of pages4
ISBN (Electronic)9781538609033
DOIs
Publication statusPublished - 30 Jan 2018
Event1st International Conference on Informatics and Computational Sciences, ICICoS 2017 - Semarang, Indonesia
Duration: 15 Nov 201716 Nov 2017

Publication series

NameProceedings - 2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017
Volume2018-January

Conference

Conference1st International Conference on Informatics and Computational Sciences, ICICoS 2017
CountryIndonesia
CitySemarang
Period15/11/1716/11/17

Keywords

  • Diabetic Retinopathy (DR)
  • LBP
  • PCA
  • texture feature

Fingerprint Dive into the research topics of 'A complete modelling of Local Binary Pattern for detection of diabetic retinopathy'. Together they form a unique fingerprint.

  • Cite this

    Sarwinda, D., B., A., & Wibisono, A. (2018). A complete modelling of Local Binary Pattern for detection of diabetic retinopathy. In Proceedings - 2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017 (pp. 7-10). (Proceedings - 2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017; Vol. 2018-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICICOS.2017.8276329